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of the Random Matrix Theory predictions. The ratios of expectation values of the lowest

eigenvalues and the cumulative eigenvalue distributions are studied for all combinations of

k and ν. After including the finite size correction from NL order chiral perturbation theory
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where the error is statistical only.
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Spontaneous chiral symmetry breaking and the related existence of light Goldstone

bosons is a basic feature of QCD. Chiral Perturbation Theory (ChPT) provides a system-

atic description of this physics in terms of a set of low energy constants which encode the

related non-perturbative features of QCD. The method of low energy effective Lagrangians

simplifies the calculations significantly [1–4] and over the years ChPT became a refined

powerful technique. Gasser and Leutwyler recognized very early, decades before the nu-

merical calculations could attack such problems, that these constants can also be fixed

using physical quantities which, presumably, will never be measured in real experiments.

They can be studied, however, in lattice QCD.

The ǫ- regime [5–8] describes physics close to the chiral limit in a box whose size is larger

than the QCD scale. On the other hand, the size of the box relative to the Goldstone boson

correlation length must be small. Under these conditions the Goldstone bosons, as opposed

to other excitations, feel the effect of boundaries strongly. ChPT provides a powerful and

systematic way to calculate the finite size corrections. A nice additional feature of the ǫ-

regime is that Random Matrix Theory (RMT) [9] makes precise predictions for microscopic

observables. RMT relates in particular the distribution of low-lying eigenvalues of the Dirac

operator in different topological sectors to the chiral condensate.

The pioneering numerical works [10–16] in the ǫ-regime in quenched QCD suggested

that this regime can be an excellent tool to study low-energy physics in QCD. The special

problems of the ǫ-regime called for new numerical procedures [14–17] which were first tested

also in this approximation. Combining these numerical developments with the renormal-

ization properties of the spectral density the work [18] present a state of the art analysis

for the quark condensate and the first Leutwyler-Smilga sum rule in quenched QCD. The

quenched approximation, however, tends to be singular in the chiral limit and it is expected

that quenching is even more problematic here than in other cases [19].

Unfortunately, full QCD simulations are expensive. In addition, in the ǫ−regime the

Dirac operator should have excellent chiral properties. The standard choice is the overlap

Dirac operator [20] with a hybrid Monte Carlo algorithm.

The results in [21] reflect already the basic physics features of the ǫ-regime. The

distribution of the low-lying eigenmodes could be fitted quite well to the RMT predictions

and a reasonable value for the chiral condensate was obtained. These results are promising

given the fact that the box was small (1.3 fm), the quark mass was rather large (mq ≥
40MeV) and the lattice was coarse (a = 0.16 fm). The results in a larger box of 1.5 fm and

at smaller quark mass mq ≈ 20MeV obtained in [22] were consistent with those of [21].

The first serious simulation results in the ǫ-regime have been presented by the JLQCD

group recently [23]. In that work Nf = 2 QCD was simulated with overlap fermions

(created with the Wilson kernel) on a lattice of size 1.83 × 3.6 fm4 with a resolution

a = 0.11 fm obtained from r0. Different bare quark masses (amq) were considered in the

range 0.110, . . . , 0.020, 0.002. The smallest quark mass (corresponding to ≈ 3MeV) was

certainly small enough to reach the ǫ-regime. Hybrid Monte Carlo with overlap fermions

has problems when the topological charge changes. To avoid this an action was used which

prevented topology change and the whole run stayed in the Q = 0 sector. The authors

observed an overall good agreement with RMT. The fermion condensate, which is the only
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parameter to be fitted, was found to be Σ(2GeV)1/3 = 0.251(7)(10)GeV in the MS scheme.

Our work is based on the parametrized fixed-point (FP) action which has been tested

in detail in quenched QCD [24]. The exact FP Dirac operator satisfies the Ginsparg-

Wilson relation

D†
GW +DGW = D†

GW2RDGW , (1)

where R is a local operator and is trivial in Dirac space. The parametrized FP action

has many gauge paths and involves a special smearing with projection to the gauge group

SU(3). As a consequence, hybrid Monte Carlo algorithms can not be used. In the work [25]

we advised a partially global update with three nested accept/reject steps which can reach

small quark masses even on coarse lattices. Several steps of this algorithm were devel-

oped in [26] using some earlier suggestions [27–30]. All the three steps are preconditioned.

Pieces of the quark determinant are switched on gradually in the order of their com-

putational expenses. The largest and most fluctuating part of the determinant is com-

ing from the ultraviolet modes. We reduce these fluctuations by calculating the trace of

Dn
FP, n = 1, . . . , 4 [26, 31, 32]. The ∼ 100 lowest-lying modes are calculated and subtracted.

The determinant of the reduced and subtracted DFP is calculated stochastically [33–36].

For the determinant breakup we generalized the mass shifting method of [31]. For the

strange quark we performed a root operation. Since the strange quark mass is not very

small, we used a polynomial expansion to approximate this root operator. Recently we re-

placed the polynomial expansion by a rational approximation [37] which brought a ≈ 30%

performance gain in this part.

Due to the partial global updating procedure the algorithm, beyond a certain volume,

scales with V 2 which constrains the size of lattices which can be considered. Due to the

large number of subtracted low-lying modes, small quark mass is not a barrier.

We generated ∼ 4000 equilibrated configurations in the Markov chain on an 124 lattice

using the partially global algorithm discussed above. The distance between every second

configurations in this chain is similar to that of two gauge configurations separated by a

typical Metropolis gauge update sweep. We considered every tenth configurations from the

Markov chain and performed the measurements on the remaining ∼ 400 configurations. As

will be described at the error-analysis of Σ later, on this set of configurations we estimated

the autocorrelation time to be τ ≈ 5.

As it is well known, for a Dirac operator with good chiral properties it is difficult

to tunnel between different topological sectors. In our simulation we observed only ∼ 10

events of tunneling, which is certainly not enough to estimate the relative weights of the

different sectors. However, this is also not needed for our purposes.

We fixed the lattice spacing from the Sommer parameter [38] r0 = 0.49 fm and found

a = 0.129(5) fm. Our box has the size (1.6 fm)4.

The Dirac operator DFP has no exact chiral symmetry due to parametrization errors.

As a consequence, the quark masses have an additive mass renormalization. The degen-

erate u, d and the s quark masses in the code are Mud = 0.025 and Ms = 0.103. The

additive renormalization was measured following the steps described in [39] and has the

value M0 = 0.0147(3), as shown in figure 1. Subtracting the additive renormalization we
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Figure 1. The axial Ward identity (AWI) mass for the three combinations of quark masses. The

linear extrapolation to MAWI = 0 gives an additive mass renormalization M0 = 0.0147(3).

get the bare masses mud = 0.0103(3) and ms = 0.0883(3) which corresponds to 16MeV

and 137MeV, respectively.

As we mentioned above, a simulation with lighter quark masses would not be more

expensive. In our case, however, a smaller mud were not useful either. RMT predicts

the probability distribution pνk(ξνk) for the k-th low-lying eigenvalue (k = 1, 2, . . . ) of

the Dirac operator in the topological sector ν. Denoting the corresponding eigenvalues

of the (continuum) Dirac operator by iανk, the variable ξνk is related to the bare chiral

condensate Σ as ξνk = ανkΣV . Here V is the volume of the box. Figure 2 shows the

prediction of RMT for the cumulative distributions
∫ ξνk

0 dξpνk(ξ) for ν = 0 and k = 1, 2, 3.

The distributions depend on µi = miΣV where mi are the quark masses. Decreasing the

mud mass by more than a factor 10 (at fixed ms) the cumulative distributions practically

remain unchanged. On the other hand sending the strange quark mass to infinity (at fixed

mud) we land on a Nf = 2 flavor theory with a visibly different distribution. The strange

quark has a (modest) effect on our observables.

While the eigenvalues of the continuum Dirac operator lie on the imaginary axis the

spectrum of lattice Dirac operators is more complicated. As it is well known, the spectrum

of the Dirac operator satisfying the Ginsparg-Wilson relation with 2R = 1 lies on the circle

|λ − 1| = 1. In our case where 2R is different from 1, it is convenient to introduce the

rescaled operator D̂GW =
√

2RDGW

√
2R, for which the 2R factor is eliminated in the GW

relation, and the spectrum lies on the circle. (In fact, our operator 2R for the low-lying

modes is effectively a constant close to 1 within a few percent.) To relate the eigenvalues

on the GW circle to those appearing in the RMT (or in general, in continuum expressions)

it is natural to use the stereographic projection

iα =
λ

1 − λ/2
. (2)
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Figure 2. Random Matrix Theory prediction for the cumulative distribution of ξ = ξνk = ανkΣV ,

where iανk is the k-th eigenvalue of the continuum Dirac operator in a gauge background with

topological charge ν, and µi = miΣV . Here the ν = 0 results are shown, but the picture is similar

for ν = 1, 2.

(Note that the non-local operator D̂GW/
(

1 − 1
2D̂GW

)

anticommutes with γ5.)

As figure 3 shows, the low-lying eigenvalues of DFP(m) (which we obtain during our

simulation) are close but not exactly on the GW circle, hence we project them first hori-

zontally onto the GW circle, and make the stereographic projection in the next step. This

is justified by the observation that making a systematic GW improvement of DFP towards

DGW the imaginary part of the eigenvalues stays practically constant – they move hori-

zontally to the GW circle. The values of α obtained by this procedure are then compared

with the RMT predictions.

Having the probability distributions from RMT we can calculate the ratios 〈ξνk〉/〈ξν′k′〉,
where the factor ΣV cancels. These predictions are compared with the measured ratios in

figure 4, where all the ratios in the topological sectors ν = 1, 2, 3 for the first three lowest

eigenvalues are shown.

At this point we have to discuss the way we identify the topological sectors. According

to the index theorem [40] one can identify the topological charge from the zero modes of a

Ginsparg-Wilson Dirac operator. However, our DFP has no exact chiral symmetry and has

modes on the real axis. Occasionally, the real eigenvalue λ might be even far from zero in

which case the topological interpretation is uncertain. We note here that using an exact

Ginsparg-Wilson operator (with kernel DFP) for measuring the topological charge is not

a good solution to this problem. The overlap just projects most of the real eigenvalues to

the point λ = 0.

Following the intuitive picture that topology is related to extended objects we in-

vestigated for real eigenvalues the correlation between the eigenvalue and the inverse
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Figure 3. The histogram of the deviation from the circle, δr = 1 − |λ − 1|, for the eigenvalues of

DFP on 83 × 24 and 124 lattices for the complex eigenvalues with |Imλ| < 0.1, using the present

mass parameters.
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Figure 4. Ratios of expectation values 〈ανk〉 obtained from simulations compared to the results

of RMT, where νk is indexing the k-th lowest eigenvalue in the topological sector ν. The different

symbols refer to the denominator while νk of the numerator is indicated at the data points. For

example, the highest ratio with value ≈ 3 in the figure refers to 〈ξ23〉/〈ξ01〉
.

participation ratio (IPR) of the corresponding eigenvector. Here IPR is given by
∑

x(
∑12

i=1 |ψ
(λ)
i (x)|2)2 for a normalized eigenvector ψ(λ), and it is inversely proportional

to the size of the effective support of the eigenfunction. As figure 5 shows, there is a

strong correlation indeed. As λ is moving away from zero, the IPR increases indicating

– 6 –



J
H
E
P
1
1
(
2
0
0
9
)
1
0
0

0 0.1 0.2 0.3 0.4 0.5
λ

0

0.005

0.01

0.015

0.02

0.025

IP
R

Figure 5. The inverse participation ratio
∑

x(
∑12

i=1 |ψ
(λ)
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expectations.
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Figure 6. Histogram of λ(DFP) for the real eigenvalues. Note that there are 231 configurations

with no real eigenvalues which, of course, do not enter this plot.

that the wave function becomes more and more localized. Figure 6 demonstrates that the

real eigenvalues λ(DFP) are strongly concentrated in a small region close to zero. The

histogram of λ(DFP) has a large, narrow peak followed by a long tail.

We shall use the small real eigenvalues and the chirality of the corresponding eigenvec-

tors to assign a topological charge to a given configuration. Obviously, this involves some

freedom of choice.

It turns out, however, that the ambiguity of assigning the topological charge based on

– 7 –



J
H
E
P
1
1
(
2
0
0
9
)
1
0
0

the smallest real eigenvalues of DFP in our case does not affect significantly the estimated

value of the condensate. During the update procedure we have on each configuration the

eigenvalues and eigenvectors for the smallest 96 values of |λ|. Out of 414 configurations we

analyzed, 231 configurations have no real eigenvalue at all. (This reflects the good chiral

properties of DFP.) For these configurations the assignment to ν = 0 is unambiguous. Fur-

ther, one can assign to the ν = 0 sector those configurations which have no real eigenvalues

below some cut c1. That means that we consider eigenvalues with λ > c1 as (localized)

lattice artifacts. Taking c1 = 0.1, 0.08, 0.06, 0.04 we obtained 284, 288, 296, 313 configu-

rations, respectively. This choice influences the fit value of aΣ1/3 by ∼ 0.3%, less than the

statistical error of ∼ 1%. The value of the condensate was determined from the ν = 0 sec-

tor in two different ways, from the distribution of the k = 1 eigenvalues alone and from the

k = 2, 3 eigenvalues. The results were consistent, practically with the same statistical error.

The results for ν ≥ 1 were used only to check the consistency to the RMT predictions.

To assign the topological charge in this case we introduced two cuts, c0 ≤ c1. To decrease

the ambiguity of the assignment, the configuration was discarded if it had a real eigenvalue

in the interval [c0, c1]. Then the total chirality of the modes with λ < c0 was used as

the topological charge. We have chosen c0 = 0.03 and c1 = 0.1 in the plots for ν = 1, 2

described later, but any other reasonable choice leads to very similar picture.

Figure 8 compares the cumulative distributions of the first three eigenvalues in the

ν = 0 topological sector obtained using the overlap improved fixed-point Dirac operator

DGW vs. DFP in the measurement. The distributions are very similar showing that the

two operators are close to each other. The k = 1 distribution from DGW has a tail at

small eigenvalues (i.e. has a smaller gap than DFP) demonstrating a systematic error one

obtains when using different Dirac operators for the generation of the configurations and

for the measurements: the small eigenvalues are less efficiently suppressed.

In figure 9 the cumulative distributions of the DFP operator are compared with RMT

for the ν = 0 topological sector. The only matching parameter is the bare condensate

Σ which enters the RMT predictions through µi = miΣV and in αΣV . Using the value

a = 0.129(5) fm for our lattice spacing we obtained the result for this bare quantity Σ1/3 =

0.291(4)(10)GeV. Both errors are statistical. The first error comes from the statistical

errors of the measured distributions, the second one is due to the error in the lattice scale a.

For the determination of the statistical error of aΣ1/3 we used the jack-knife method

with different length of the bins, between 5 and 20. This gave a rough estimate for the

autocorrelation time τ ≈ 5 (assuming an auto-correlation with a single exponential). We

took this into account in estimating the statistical error.

Comparing the shape of distributions in figure 9 one sees that although the mean

values of the distributions agree well with the RMT prediction, the observed distribution

of the first eigenvalue is narrower than the theoretical prediction, while the shapes of the

k = 2 and k = 3 distributions agree well. This might be a consequence of our relatively

small volume, L ≈ 1.6 fm. One expects that this affects more the distribution of the

k = 1 eigenvalue, especially at small λ values, which correspond to more extended wave

functions. On the contrary, discretization errors should affect more the largest eigenvalues

which correspond to shorter wave length. However, our FP Dirac operator is expected to
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Figure 7. The spectrum of DFP for 50 configurations on 83×24 and 124 lattices, at the same bare

mass parameters and gauge coupling.

have small discretization errors even at such coarse lattices.

In figures 10), (11 the rescaled cumulative distributions for ν = 1 and ν = 2 cases

(using the same value of Σ by rescaling) are compared with the RMT predictions.

The result above receives a small correction due to the fact that, for simplifying the

presentation, we suppressed a technical complication. As mentioned before the exact fixed-

point operator satisfies a Ginsparg-Wilson relation with a local operator 2R. For this

reason the quark mass enters in a simple additive way in the form D̂+m(1− D̂/2), where

D̂ =
√

2RDFP

√
2R. Effectively the operator 2R behaves in the infrared like a constant

close to 1. Its expectation value for the lowest ∼ 100 eigenvectors is 1.05 within 1%. Using

the spectrum of D̂ (which is in fact identical to that of 2RDFP) the matching with RMT

gives the slightly changed result Σ1/3 = 0.286(4)(10)GeV.

In the language of a ferromagnetic O(N) model one should interpret Σ as the absolute

value of the magnetization in the finite volume V . This differs from the value Σ∞ defined

in the infinite volume by a finite-size correction which can be calculated in ChPT. In

the presence of the magnetic field h the orientation of magnetization is controlled by the

Boltzmann factor exp(hM cos θ) where M is the total magnetization. This gives

〈M‖〉 = M
Y ′

N (hM)

YN (hM)
, (3)

where YN (z) is related to the modified Bessel functions. Comparing this expression with

the result of ChPT [7] we get for N = 4 (corresponding to two flavors) Σ = ρΣ∞, where

ρ =

(

1 +
3

2

β1

F 2L2

)

. (4)
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Here the shape coefficient β1 takes the value 0.14046 for a symmetric box [7]. The one-loop

finite-size correction to the order parameter (magnetization in the example above) has been

calculated for the SU(Nf )× SU(Nf ) symmetry group in [5, 6], for the O(N) group in [41]

and up to the two-loop level in [7].

Neglecting the strange quark contribution in the finite size effects we use the two-flavor

result to correct the measured bare Σ1/3 = 0.286(4)(10)GeV by the one-loop finite size

correction to obtain Σ
1/3
∞ = Σ1/3/1.119 = 0.255(4)(10)GeV.

To relate this bare quantity to the generally used MS scheme one still needs the corre-

sponding renormalization factor. This has been calculated in [42]. The main points of this

calculation are summarized in the appendix. With the conversion factor 0.82(3) we obtain

[ΣMS(2GeV)]1/3 = 0.239(12)GeV . (5)

Acknowledgments
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A. Renormalization of the condensate in the MS scheme

The bare lattice scalar density is not universal, it depends on the lattice action and it needs

renormalization. The conventional way is to express the result in MS scheme at some given

scale, e.g. µ0 = 2GeV.
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To relate the bare lattice result to MS scheme one generally uses the Rome-

Southhampton RI/MOM method [43]. In this method one introduces an intermediate

scheme RI (or RI′1) where some Green’s functions of the actual operator (calculated in a

fixed gauge) are equated to their corresponding Born terms at a given scale p2 = µ2.

In the first step one relates the bare lattice operator non-perturbatively to its renor-

malized counterpart in the RI scheme

ORI
R (µ) = ZRI,lat

O (µ, a)Olat
bare(a) . (A.1)

The matching scale µ is restricted by two conditions: It should be sufficiently large

to avoid non-perturbative effects and small enough to avoid large cut-off effects. For the

scalar density, the non-perturbative matching was done in [42], using a technique which

removes a large part of O(a) cut-off effects.

In the second step one relates the renormalized operators in the RI and MS schemes

in perturbation theory

OMS
R (µ) = ZMS,RI(µ)ORI

R (µ) . (A.2)

Obviously, the value of µ must lie in the perturbative regime. The factor ZMS,RI(µ)

has been calculated up to NNLO [44] and NNNLO [45]. Combining (A.1) and (A.2), we

obtain the matching factor connecting the bare lattice and the renormalized MS results

ZMS,lat
O (µ, a) = ZMS,RI(µ)ZRI,lat

O (µ, a) . (A.3)

As the expansion parameter in the perturbative series is the running coupling α(µ) of

QCD, we need to determine it for the scale µ where the matching is done. The running of

1These schemes differ in their definition of the quark field renormalization factor Zq .
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Figure 12. The renormalization factor ZMS,lat
s (µ0, a) for the scalar density, connecting the MS

and lattice schemes, at µ0 = 2 GeV, obtained using RI and RI′ schemes at the intermediate step

vs. the matching scale µ.

α is described by the differential equation

dα(µ)

d lnµ2
= β(α) , (A.4)

where the 4-loop β-function in MS scheme is given in [46]. As initial condition we use

α(2GeV) = 0.2904 from [47].2 The procedure described above is carried out at several

matching scales µ ≥ 2GeV.

In the third step Renormalization Group technique is used to obtain the desired con-

version factor ZMS,lat
s (µ0, a) for the scalar density at µ0 = 2GeV,

ZMS,lat
s (µ0, a) = ZMS,lat

s (µ, a) exp

(

−
∫ α(µ)

α(µ0)
dα
γs(α)

β(α)

)

. (A.5)

Here, due to the relation Zs = Z−1
m , the anomalous dimension γs is related to the mass

anomalous dimension by γs = −γm. The latter has been calculated to four loops in [49, 50].

In figure 12, we plot our result ZMS,lat
s (µ0, a) at µ0 = 2GeV vs. the matching scale

µ for the intermediate schemes RI and RI′. If the non-perturbative, cut-off and higher

order perturbative effects were negligible, the two curves would coincide and would be

independent of the choice of µ. Taking the average values for 2GeV ≤ µ ≤ 3GeV and

taking into account the slight difference between the curves, we get

ZMS,lat
s (µ0 = 2GeV, a) = 0.82(3) (A.6)

2This result is obtained by using the PDG value α(MZ) = 0.1176 ± 0.002 [48] and running it from

5-flavors down to 3-flavors, across the mb and mc thresholds
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[13] L. Giusti, M. Lüscher, P. Weisz and H. Wittig, Lattice QCD in the ǫ-regime and random

matrix theory, JHEP 11 (2003) 023 [hep-lat/0309189] [SPIRES].

[14] L. Giusti, P. Hernández, M. Laine, P. Weisz and H. Wittig, Low-energy couplings of QCD

from current correlators near the chiral limit, JHEP 04 (2004) 013 [hep-lat/0402002]

[SPIRES].

[15] R.G. Edwards, Topology and low lying fermion modes,

Nucl. Phys. (Proc. Suppl.) 106 (2002) 38 [hep-lat/0111009] [SPIRES].

[16] T.A. DeGrand and S. Schaefer, Improving meson two-point functions in lattice QCD,

Comput. Phys. Commun. 159 (2004) 185 [hep-lat/0401011] [SPIRES].
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